Soil Microbial Changes with No-Till

Verónica Acosta Martínez
Soil Microbiologist and Biochemist
Cropping Systems Research Laboratory
3810 4th Street, Lubbock, TX
Soil Microbial Communities

- Microbial Community Size
- Community Structure
- Microbial Diversity
- Processes

- Fungi
- Protozoa
- Bacteria (G+, G-, actino)
To identify major trends in soil microbial communities associated with no-tillage across several locations and soils using publications from 1980-present.
Soil Microbial and Biochemical Changes Associated with Reduced Tillage (John W. Doran, 1980)
Soil Microbial and Biochemical Changes Associated with Reduced Tillage (John W. Doran, 1980)

Table 1—Climatic, soil, and management characteristics of experimental sites with long-term no-till/conventional tillage comparisons.

<table>
<thead>
<tr>
<th>Location (Cooperators)</th>
<th>Mean annual</th>
<th>Soil series (classification)</th>
<th>Conventional tillage method (depth, cm)†</th>
<th>Herbicides used (rate, kg/ha)†</th>
<th>Years (crop) in no-till conventional till, previous cropping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky, Lexington (Bob Blevins, Wilbur Frye)</td>
<td>113.0</td>
<td>Maury Silt Loam (fine, mixed, mesic Typic Paleudalfs)</td>
<td>Spring plow (20) disked twice</td>
<td>Paraquat (0.28)</td>
<td>9 years (corn), 50 to 60 years Bluegrass sod</td>
</tr>
<tr>
<td>Minnesota, Waseca (Gyles Randall)</td>
<td>76.1</td>
<td>Nicollet Clay Loam (fine-loamy, mixed, mesic Aquic Hapludolls)</td>
<td>Fall plow (20-25) Spring cult. with mulch harrow</td>
<td>Simazine (1.68) Atrazine (1.68)</td>
<td>9 years (corn), previously corn</td>
</tr>
<tr>
<td>W. Virginia, Morganton (Orus Bennett, Tom Staley)</td>
<td>102.0</td>
<td>Wharton-Cookport Silt Loam (fine-loamy, mixed, mesic Aquic Hapludalfs)</td>
<td>Spring plow (25) disked twice</td>
<td>Atrazine (2.24)</td>
<td>5 years (corn), previously Bromegrass sod</td>
</tr>
<tr>
<td>Nebraska, Lincoln (Lloyd Mielle, Jim Ellis, Jim Schepers)</td>
<td>74.2</td>
<td>Crete-Butler Silty Clay Loam (fine, montmorillonitic, mesic Pachic Argiustollus-Abruptic Argiaquolls)</td>
<td>Spring plow (20) disked twice</td>
<td>Atrazine (2.24)</td>
<td>3 years (corn), previously soybeans</td>
</tr>
<tr>
<td>Nebraska, Sidney (Charles Fenster, Gary Peterson)</td>
<td>44.6</td>
<td>Duroc Loam (fine-silty, mixed, mesic Pachic Haplustolls)</td>
<td>Spring plow (10-15) Cult. 2 to 3 times Rot. rot 1 to 2 times</td>
<td>Paraquat (1.1) Glyphosate (0.84)</td>
<td>9 years (wheat-fallow), previously native sod</td>
</tr>
<tr>
<td>Nebraska, Sidney (Charles Fenster)</td>
<td>44.6</td>
<td>Alliance Silt Loam (fine-silty, mixed, mesic Aridic Argiustolls)</td>
<td>Same as above</td>
<td>Same as above</td>
<td>10 years (wheat-fallow) previously cult. wheat fallow & crested wheatgrass</td>
</tr>
<tr>
<td>Oregon, Pendleton (Don Rydych, Ray Almaras)</td>
<td>40.6</td>
<td>Walla Walla Silt Loam (coarse-silty, mixed, mesic Typic Haploxerolls)</td>
<td>Spring plow (15) Cult. twice Rot. rot 3 to 4 times</td>
<td>Paraquat (0.84) Glyphosate (0.84) Cyanazine (2.24) + IPC (3.36)-1978</td>
<td>9 years (wheat-fallow), previously cult. wheat fallow</td>
</tr>
</tbody>
</table>

† Spring plow = spring moldboard plow, cult. = cultivation, rot. rot = rotary rodweed management
Ratio = No-till/Conventional till.

This ratio enables better comparison of tillage effects across locations with minimum effects from differences in soil moisture or management at time of sampling.

Ratios > 1 = increase in values with no-tillage.

Ratios < 1 = decrease in value with no-tillage.
Long-term tillage effects

<table>
<thead>
<tr>
<th>Microbial group</th>
<th>0-7.5 cm</th>
<th>7.5-15 cm</th>
<th>0-15 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Aerobes</td>
<td>1.35***</td>
<td>0.71***</td>
<td>1.03</td>
</tr>
<tr>
<td>Fungi</td>
<td>1.57***</td>
<td>0.76**</td>
<td>1.18</td>
</tr>
<tr>
<td>Actinomycetes</td>
<td>1.14</td>
<td>0.98</td>
<td>1.08</td>
</tr>
<tr>
<td>Aerobic bacteria</td>
<td>1.41***</td>
<td>0.68***</td>
<td>1.03</td>
</tr>
<tr>
<td>NH₄⁺ oxidizers</td>
<td>1.25 (1.13)§</td>
<td>0.55** (0.56)</td>
<td>0.89†(0.87)</td>
</tr>
<tr>
<td>NO₃⁻ oxidizers</td>
<td>1.58 (0.92)</td>
<td>0.75** (0.42)</td>
<td>1.14 (0.71)</td>
</tr>
<tr>
<td>Facultative anaerobes</td>
<td>1.57*</td>
<td>1.23</td>
<td>1.32*</td>
</tr>
<tr>
<td>Denitrifiers</td>
<td>7.31*(2.70)</td>
<td>1.77 (1.92)</td>
<td>2.83†(1.99)</td>
</tr>
</tbody>
</table>

Ratio of microbial populations (NT/CT) with depth
Dehydrogenase activity
Microbial activity index

- **0–7.5 cm:**
 - Higher microbial act. under no-till soil

- **7.5- 15 or 15- 30 cm:**
 - Trends **were reversed**
 - Mic. Act: similar or higher in conv. till.
No-tilled Soils

- **Distinct Microbial Communities**
- **Saprophytic fungi and bacteria** concentrate and recycle nutrients
- **Arbuscular Mycorrhizae** concentrate due to the large root biomass
No-tilled Soils

- ↑ Organic matter Cont.
- Better Soil Structure
- ↑ Water Infiltration
- ↑ Aeration
Higher CO₂ efflux immediately after tillage and lasted for 4 d.

Respiration was similar in both soils until the 4th day after tillage, and then declined in the tilled soil.

The authors concluded: these trends suggest that tillage makes available previously protected organic N.
Clay: < 0.02 µm
Silt: 0.02-0.2 mm
Sand: 0.2-2 mm

Bacteria: 0.1 µm - > 2 µm

Fungi:
- Degradation products are cementing agents
- Physically - Bring aggregates together
Soil Microbial Community Change and Recovery after One-Time Tillage of Continuous No-Till
(Wortmann, C.S. et al. 2008)

- Occasional tillage = One-time tillage operation in a system that was otherwise maintained without tillage.

- Objective: Determine changes in microbial community after one-time tillage of NT and their recovery dynamics over one or two cropping seasons following tillage.
<table>
<thead>
<tr>
<th>Site</th>
<th>Continuous NT history</th>
<th>Date of one-time tillage</th>
<th>Crops following tillage</th>
<th>Soil series</th>
<th>Soil classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMF</td>
<td>12</td>
<td>26 Mar. 2003</td>
<td>sorghum†-soybean-sorghum soybean-sorghum soybean-corn</td>
<td>Sharpsburg Si-Cl-loam</td>
<td>Typic Argiudoll</td>
</tr>
<tr>
<td>RMF</td>
<td>13</td>
<td>24 Oct. 2003</td>
<td></td>
<td>Sharpsburg Si-Cl-loam</td>
<td>Typic Argiudoll</td>
</tr>
<tr>
<td>ARDC</td>
<td>7</td>
<td>26 Nov. 2003</td>
<td></td>
<td>Yutan Si Cl-loam</td>
<td>Mollic Hapludalf</td>
</tr>
</tbody>
</table>

† Underlined crop is the first crop after the one-time tillage.
Tillage effects on soil microbes

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Moldboard plow, spring (RMF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>-39.0***</td>
</tr>
<tr>
<td>5-20</td>
<td>+32.6**</td>
</tr>
<tr>
<td>20-30</td>
<td>+20.6+</td>
</tr>
<tr>
<td>0-5</td>
<td>-31.4***</td>
</tr>
<tr>
<td>5-20</td>
<td>+10.7</td>
</tr>
<tr>
<td>20-30</td>
<td>+3.4</td>
</tr>
<tr>
<td>0-5</td>
<td>-63.5***</td>
</tr>
<tr>
<td>5-20</td>
<td>+138.4**</td>
</tr>
<tr>
<td>20-30</td>
<td>+56.1</td>
</tr>
<tr>
<td>0-5</td>
<td>-64.9***</td>
</tr>
<tr>
<td>5-20</td>
<td>-0.8</td>
</tr>
<tr>
<td>20-30</td>
<td>-5.7</td>
</tr>
</tbody>
</table>
Research in the High Plains

USDA-ARS, Lubbock
V. Acosta-Martínez
Ted Zobeck
Robert Lascano
Jill Booker

http://www.texas-on-line.com/graphic/ctytexas.gif
Tillage effects on Microbial Communities in a Sandy Soil

✓ Olton sandy loam (Fine, mixed, superactive, thermic Aridic Paleustolls)
✓ Avg. 16.4% clay and 67.6% sand
✓ 0.65 g kg\(^{-1}\) of OM
“High Biomass Crop” Study

Low Cropping Intensity

Continuous cotton (Cv. Till)
Cotton-sorghum
Cotton-rye-sorghum
Haygrazer-rye

High Cropping Intensity

(Cv. & No-till)
Microbial biomass C

No impacts due to tillage during the study.
How long changes on the microbial component can occur depend...

- Soil
- Cropping systems
- Environment
Conclusions: **Tillage**

- One-time tillage can affect soil microbial communities (i.e., Reduced Fungi ↓↓ and Bacteria↓).
- Short-term changes in nutrient dynamics:
 - N losses (denitrification and nitrate leaching)
 - C losses (↑ org.matter degr. & CO₂).
- These changes will possibly affect long-term ecosystem function.
Conclusions: **No-Tillage**

- No-till agriculture ↑ or similar crop yields as conventional tillage practices.
- Protects soil against erosion
- Distinct soil microbial communities and ↑ microbial activities (↑ C storage in soil).
Questions?